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Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change
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A lattice-Boltzmann-equation method for nonideal gases augmented by the pressure evolution equation is
proposed to simulate isothermal two-phase fluid flow with phase change. The pressure evolution equation is
derived by taking time derivative of the equation of state for nonideal gases. Unlike previous methods that use
the equation of state to update pressure, the pressure field is evolved using the pressure evolution equation. The
new approach has two advantages. First, it can avoid spurious pressure fluctuations at phase interfaces that
develop owing to the pressure update by the equation of state, thus improving numerical stability of the
method. Second, it permits compressibility of the fluid at phase interfaces when phase change occurs due to
pressurization and depressurization. The proposed method is applied to simulate an isothermal phase change
process. The numerical result is in excellent agreement with the analytical solution.
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[. INTRODUCTION nonideal gases, the original derivation in REf3] requires
only a single-particle distribution function for the transport
Among many successful applications of the lattice-of mass and momentum. The dengitgnd the velocity are
Boltzmann-equatioriLBE) methods to fluid mechanics, the updated by taking moments of the particle distribution func-
LBE methods for nonideal gases or binary fluids have wit-tion, and the thermodynamic pressu® is obtained from
nessed most significant progress in recent yglard 0. Most  the equation of statéEOS for nonideal gases, e.g., the van
of these two-phase LBE methods can be considered as difler Waals EOS. However, they have not reported any nu-
fuse interface methodEll] in that the phase interface is merical simulations using the original formulation. To our
spread on grid points and the surface tension is transformddchowledge, the original formulatiofiL3] is numerically un-
into a volumetric force. Generally, diffuse interface methodsstable due to severe pressure fluctuations at phase interfaces
have some advantages over sharp interface methods becausewhich app(t) changes its sign. In the working method
computations are much easier for three-dimensiqBal) [7-10], they introduced a second-particle distribution func-
flows in which topological change of the interfaces is com-tion for the transport of the order parameter or the density in
plicated. They are especially useful when phase change jsarticular. The DBE and LBE for thenassand momentum
under consideratiofil2], since the speed of displacement of are then transformed into the DBE and LBE for fivessure
the interface must be explicitly computed in sharp interfaceand momentununder the assumption of incompressibility of
methods. In addition, they are appropriate for some problemthe fluid. The resulting macroscopic equations include the
that are currently tough for sharp interface methods such asontinuity equation, the momentum equation, and the artifi-
contact line dynamics and coalescence of droplets. As diffuseial compressibilitylike equation for the pressure. Largely
interface methods, the LBE methods naturally share all otlue to the transformation, numerical stability is significantly
these characteristics. improved though at the cost of solving another set of distri-
Recently, He, Shan, and Dool¢h3] proposed an LBE bution function for the continuity equation. He, Chen, and
formulation for nonideal gases based on the continuous diZhang[7] argued that the stability was gained due to the
crete Boltzmann equatiofDBE) using a single-relaxation- smaller magnitude of the external body force term after the
time approximatior{14]. It is a promising formulation be- transformation. Chert al. [15] adopted the above single-
cause the analysis of other schemes that incorporatearticle-distribution-function LBE method for nonideal gases
intermolecular forces into LBE methods can be clearly perwith the aid of a total variation diminishing scheme to simu-
formed in the framework of the proposed formulation. Theylate two-phase flow having a large density ratio.
showed that anisotropy found in other schemes is a conse- Despite all the excellent results presented in Réfs10],
quence of an inappropriate intermolecular interaction. Usingt should be pointed out that their working method leaves
the formulation with some modifications. K¢ al. simulated  ambiguity and poses some problems of physical origin. In-
single- and multiple-mode Rayleigh-Taylor instabilities in consistent temporal discretizatidie.g., the explicit Euler
two dimensiond7] and three dimensions], and reported method for the collision term and the Crank-Nicolson
excellent results. Later, Zhargy al.[9,10] validated the sur- method for the external body force termeduces the order
face tension term in the model and studied the effects 0bf accuracy of the schenisee Appendix Aand omission of
surface tension on two-phase Kelvin-Helmholtz instabilities.some body force terms in the equation for the order param-
Like most of previous LBE methods for one-componenteter results in spurious gradients of these tetseg Appen-
dix B). On top of all these, the pressure in the model is not
uniquely defined. The pressure in the intermolecular interac-
*Electronic address: ching-long-lin@uiowa.edu tion term for nonideal gases is obtained from the EOS and is
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therefore the thermodynamic pressure, while the pressure up- Il. DISCRETE BOLTZMANN EQUATION
dated by taking moment of the particle distribution function FOR NONIDEAL GASES

is the hydrodynamic pressure approximately satisfying in- The discrete Boltzmann equation for nonideal gases pro-

compressibility as in the artificial c_ompressibility _mc_ethod posed by He, Shan, and Doolgt8] reads
[16]. If phase change occurs, the fluid cannot remain incom-

pressible at phase interfaces and the effect of compressibility 1 Fi(e,i—U)
must be taken into account. Difa=dif ot €nidifa=— (o™ o)+ Tf‘jﬁ,
From different perspective, the equation for the pressure PEs 2.1)

recovered from the LBE method in Ref§—-10] can be re-

garded as a simplified version of the pressure evolution equavheref , is the single-particle distribution function in the
tion rather than the artificial compressibilitylike equation asdirection of a lattice modele,; is thei component of the
interpreted by Refd.7,17]. The reason why the LBE meth- qa-direction microscopic velocityF; is an external body
ods based on single-particle distribution function could beforce which can depend on both space and timés the
unstable at phase interfaces lies in evaluation of the pressurelaxation time due to collision, antf? is the equilibrium
Updating the pressure via the EOS often generates erroneodsstribution function.

pressure fluctuations at phase interfaces due to numerical dif- Equation(2.1) with the equilibrium distribution function
fusion [18]. Alternatively, if the pressure is updated by the [21]
pressure evolution equation, the pressure equilibrium among
fluid components is automatically maintained and the gen-
eration of spurious pressure fluctuations can be avoided
[19,20Q. It is speculated that the success of the LBE method

in Refs.[7—10Q] is mainly due to the introduction of the pres- wheret, is a weighting factor, recovers the macroscopic
sure evolution equation even though it is derived for incom-mnass and momentum equations:

pressible flows and appropriate only for ideal gases.

2
€aili  (€4i€4)—C5Oij)UiL;
o=t p| 1+ +

a taP c? 2ce

(22

The objective of the paper is to present a different LBE dp+3di(pu;) =0, 2.3
method based on the pressure evolution equation for simula- (i)
tion of one-component two-phase fluid flow with phase d(pui) +d;(puiuy) = d;o> + Fy 2.9

change. The DBE and LBE that recover the general pressure (i) _ )

evolution equation for nonideal gases will be derived. WeWhereai = —pcsdj; + u(djui+ diuy). . .

will show that the artificial compressibilitylike equation 'n€ desired form of the momentum equation for nonideal
found in Refs[7—10 is a simplified version of the general 925€922] is

pressure evolution equation and only valid for the special

case of ideal gas flow in the incompressible limit. Major
difficulties with this special case arise when phase Changﬁ/herepg-
occurs. Unlike immiscible models for binary fluidél], a '

model for isothermal liquid-vapor flow is supposed to predict _)_ p®(p) is the bulk thermodynamic pressure for the iso-

phase change due to pressunzatl(_)n and depressurizati Rermal fluid andzri(-”) is the ViSCOUS Stress tensor,
Since the pressure updated by the ideal gas pressure evolu- !

tion equation only satisfies incompressibility, the pressure is
decoupled from the density variation and consequently, cor-

rect phase change is hardly expected. Solving the appropriawnereﬂ is the molecular viscosity ang= — 2/3u is the bulk
pressure evolution equation also removes the dual meanin%cosity_ The stressi(jl) is derived from the van der Waals—

of the pressure. , _ Cahn-Hilliard free energy and takes the form of
The paper is organized as follows. In Sec. Il, the discrete

Boltzmann equation for a one-component two-phase fluid
model by He, Shan, and Dool¢h3] is reviewed to elucidate Ui(,-l)= K
the pressure update procedure using the van der Waals EOS.

In Sec. Ill, the pressure evolution equation for nonideal gaseg js related to the magnitude of the surface tension force. The
is derived and compared with that for ideal gases, and thgan der Waals—Cahn-Hilliard free energy was originally de-

corresponding DBE is given in Sec. IV. The LBE method rived to describe the near-critical behavior of mixtures, when

based on the pressure evolution equation is presented in Sefe density gradients are small. However, it is generally con-
V. Section VI is devoted to testing the method by a one-sidered to be valid even when the density gradients become
dimensional isothermal phase change problem. The methddrge[23]. Equation(2.7) can be rearranged as

is also compared with the two-phase LBE method that as-

di(pui) + 9;(puuj) = d;0i; + pg; , (2.5

is the gravity force. The stresses; can be de-

composed into three parts;; = —p¥ 8+ o[+ o). Here,

a-i(iw:p“(‘;iui+3iuj)+§5’kuk5ij , (2.9

. 2.7

1 2 2
5|Vol*+pVip| &= dipdjp

sumes incompressibility and utilizes the ideal gas pressure O'i(jl)=—K(pV2p5ij+Tij), (2.9
evolution equation. Concluding remarks are given in
Sec. VII. where in two dimensions
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Assuming ideal gases with a constant speed of sound

(Gzp=d5p)I2  Gupdyp J _ ;
. (2.9 d,p=cg, the pressure evolution equation reduces to

[T, ]=
! dpdyp  —(d5p—d5p)I2

. (t) 2910 9p=
Sinceai(j'g)#aij , the external forc&; is chosen to satisfy APt pesditiFuidip T =0. (32

GUDLE =9 & . . .
dioi; +Fi=0djoj, Equation(3.2) is solved in Refs[7-10] under the assump-

5 tion of u;g,p®~0(Ma®) (Ma, Mach number which is
o'i(jl)— §M5kuk5ij) +pg; . equivalent to solving an equation for the hydrodynamic pres-
(2.10 surep®™,

hy o 290
In Refs.[7,13], F; was chosen by considering the intermo- p™+ pcgau;=0. (3.3
lecular attraction and the effects of the exclusion volume of . . - . o

the molecules on the equilibrium properties of a dense gas. Equation(3.3)is identified as Chorin’16] artificial com-

Fi=—0;(p"—pc) 8+,

In either case, the findt;’s take the same form. pressibilitylike equation in Ref§10,17. In the incompress-
The macroscopic equations recovered from the DBE wittble limit, the time derivative of the pressure becomes small
the above body forc€,; are and the incompressible condition is almost satisfied. This
interpretation, however, poses three nontrivial problems
dp+3d;(puj)=0, (2.1)  when nonideal gases are under consideration. First, the as-
sumption of the constant speed of sound in the derivation of
d(pui) + 9;(pu;u;) Eqg. (3.2 becomes invalid for nonideal gases. Second, the

assumption of negligible; 4,p" in Eq. (3.2) at phase inter-
faces is questionable for nonideal gases. Third, use of Eq.
(3.3 results in dual meanings of the pressure in the model.
The pressure in the intermolecular interaction term is the
thermodynamic pressupg? which is given by the EOS and
where the molecular viscosity is given jy=p\c2. To close IS 3 funct|on-of the den(e;:)ty. The pressure in E83 is the

IﬂLg rodynamic pressune'™ whose role is simply to enforce

the system, we need an EOS. For instance, the van der Waq e incompressible condition of free velocity divergence and

EOS nor_rrnahze((jj b{} the ;;rmcal densmg, t?e critical t%r_rll_- is obtained by taking moment of the particle distribution
peratureT,, and the reference speed of souag- function. This inconsistency even complicates the physical

=13, Rbeing the gas constant, reads meaning of the pressure in the presence of phase change.

2
= _(9] p(t)5” +(7] ,LL((?IU|+(9|UJ)_ §,U,(9kuk5”

+ a0+ pgi, (2.12

- 2 During phase change due to pressurization and depressuriza-
p(t)(p):pc( P __ SL) , (2.13  tion, d,p" undergoes non-negligible change in both sign and
3-P 8T magnitude across the phase interfaces and the effects of com-
pressibility of the fluid must be considerg2i].
wherep=pl/p. and T=T/T,. If T<1, there is a region of Equation(2.13f) can be used to determine the thermody-
negativeapp(t), which separates liquid and vapor phases of@mic pressure in the momentum equation. However, updat-
the fluid. ing the pressure via the EOS often generates erroneous pres-

sure fluctuations at the phase interfaces. According to Karni
[19], “These oscillations are not the ones commonly associ-
ated with high-order scherse.. They not only render the

In Refs.[19,20, the pressure evolution equation was de-solutions(at times fatally oscillatory, but also set off disper-
rived for multicomponent ideal gases. In what follows, we sive acoustic mechanisms which tend to further thicken the
will show the general pressure evolution equation for non-nterface.” Therefore, if the pressure is updated using the
ideal gases. The general evolution equation for the pressuggessure evolution equation, the pressure equilibrium among
p® is obtained by taking time derivative of the EOS andfluid components is automatically maintained and the gen-
utilizing the continuity equation: eration of spurious pressure fluctuations can be avoided.

Ill. PRESSURE EVOLUTION EQUATION

® Ogu+ugpt=
oGP+ pd,p Ui+ uidipt=0, (3.1) IV. DISCRETE BOLTZMANN EQUATIONS

(M) FOR PRESSURE EVOLUTION MODEL
whered,p'" is the speed of sound that may not be constant

for nonideal gases and even changes the sign at the phaseln this section, the DBEs for isothermal two-phase flow
interfaces. Consider a two-phase system in which liquid andvith phase change are derived according to the pressure evo-
vapor are in pressure equilibrium so that both pressure anldtion equation(3.1). The DBE (2.1) for the massand mo-
velocity are constant and continuous across the phase intementumequations is transformed into that for thesssure
faces. According to Refd.19,2( that considered two-fluid evolutionandmomentunequations. He, Chen, and Zhajirg
systems, if the pressure is evolved using E3j1), the pres- first used the transformation to obtain the pressure evolution
sure at the interface remains constant and the pressure egeguation for ideal gases, viz., E@.3). They, however, in-
librium between two phases is automatically maintained. terpreted the pressure evolution equation as the equation that
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enforces incompressibility in the artificial compressibilitylike The last two terms on the right-hand side of E4.3) can be

method.

expanded through the continuity equation as follows:

In order to perform the transformation, we define a new

particle distribution function

9a=TfaCit (pV=pc2)I 4 (0), 4.0
where
2
€4l (E4i€aj—C5Gij)UiU;
= + + )
I, (u)=t,[1 o 2t (4.2

Taking the total derivativ®, of the new variabley, gives

D9, =C2D;f .+ DpVT(0)—c2D,pI'(0)

1
=- X(ga_giq)—(eai_Ui)[ﬂi(p(t)_ch)

- 0j(0'i(j1)_ $uduidii) + pgi 1T (u) +DpT(0)

—c2Dpl'(0), 4.3
where the new equilibriung?is
2
€,iU; (eaiea'_csﬁij)uiul'
=t | pO+pcd| —S + ' :
@ ol P pCsg Ci 2C£sl
(4.9

Dip©=ap'" +e,0p" = —3,p" 9 pu; + €4, p(t)( 5
4.

and

Dip=dip+ €4idip=—dipu;+e,idip. (4.6
He, Chen, and Zhang7] further assumed incompressible
fluids, i.e.,d;u;=0, to reduce the above two equations to

Dip'=—0d,p"dipu;+e,idip'V= (e, —u)3p"” 43

and

Dip=—dipUi+€,idip= (€4 —U;)dip. (4.9
This eventually leads to the pressure evolution equation for
ideal gases, Eq(3.2), or the artificial compressibilitylike
equation(3.3) rather than the pressure evolution equation for
nonideal gases, E@3.1).

Finally, Egs.(4.5 and(4.6) are substituted into the DBE

forg,:

1 e W_ 2 (1) _ 2 t)_ 2
atga+eai‘9iga:_X(ga_gaq)_(eai_ui)[ai(p —pCs) = dj(0ij” — 5 mdUkSij) + pgi ]I (U) + €49 (P — pcs)I'(0)

—(9,pV—c2)a;(puyT(0).

4.9

Now that the continuity equation is transformed into the pressure evolution equation, we need another distribution function
for the continuity equation. The DBE for the density is simply Ej1) with the body force introduced above:

€.i— UL (p" = pcd) = 3 (ol = Fuaudiy) + pgi]

1 (
ﬁtfa+eai&ifa: - X(fa_fzq)_

5 T'(u).

S

(4.10

c

If the terms associated with ;)—%M&kukén) and pg; are omitted, spurious derivatives of these terms appear in the

J
Chapman-Enskog expansion as shown in Appendix B.

The macroscopic equations recovered through the Chapman-Enskog expansion are

dp+3di(pu;) =0,

2
di(pui) +d;(puiuj) = —3;p'V 5 + 9 p(djUi+ dilj) — 3 LUk Sij +dj01+ pg;,

and

0"+ pa,pVau;+uigpV =0, (4.13

where the molecular viscosity is given by:p)\cg. It is
instructive to compare the above equations with Eg<.1)—

(4.1

1)

4.12

single-particle distribution function and adopts the pressure
update procedure via the EOS. The only difference between
them is the pressure update procedure. The two-phase LBE
method of Refs[7-10] recovers the order parameter equa-
tion (C1) rather than the density equati¢h1l) and the ideal

(2.13 representative of the LBE method that employs agas pressure evolutio3.2) rather than Eq(4.13.
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V. LATTICE BOLTZMANN EQUATIONS

In order to numerically solve the DBEs, E4.9) and(4.10), these equations are discretized along characteristics over time
stepdt. The LBE forf, thus obtained is

fa—fith_ f”ﬁt(eai_Ui)[ai(p(i)_l)cg)_aj(o'i(jl)_%M‘?kukéij)"_Pgi]F
t

2
A Cs

(u)dt.
(5.1)

t+ ot
f(X+e, ot t+ot)—f (x,t)=— f
t

Note that the time integration [ri,t+ 6t] is coupled with the space integration[ix x+ e, ét]. The Chapman-Enskog analysis
shows that the trapezoidal rule must be used for both of the integrations in order not to introduce any spurious derivatives of
the second term into the system while retaining second-order accuracy. Application of the trapezoidal rule leads to

1,5 f,—fe
fa(x+ea6t,t+5t)—fa(x,t)=—§ +
T |(X,t) T ‘(x+eaé‘t,t+é‘t)
ot (eai_ui)[ﬁi(p(t)_pcg)_aj(o'i(jl)_%ﬂakukéij)+pgi]
Y o2 I'(u)
s (x,t)
ot [ (eu—u)[ai(pV—pcd) = 3;(aP = 2 uauid)) + pgi]
o i i i s é ij 3 kYk Cij i F(U) ' (5.2)
2 Cs
(x+e,dt,t+4t)
wherer=\/6t.
Likewise, the LBE forg,, is
1[9.—9a o« 02 ot
0ucH 8,0+ 80~ g (x1)=— 5| 91‘ — — S w4 (pY —pcd)
T (x.t) T (x+e,dt,t+at)
_ (H_2 ﬂ ) _ 2
dj(aij” = s nduSi) + pgi 1T (W)} (x,0) + > [€4idi(p"—pcH)T'(0)
(t)_ 2 ot (t) 2
—(9,p _Cs)5ipuir(0)](x,t)_E{(eai_ui)[5i(p —pCs)
(H_ 2 ot (1) 2
—d;( oy _§:U“akuk5ij)+Pgi]r(u)}(x+eaﬁt,t+b‘t)+?[eai&i(p —pc)I'(0)
- ((%p(t)—Cg)ﬁiPUiF(O)](He&&,H 5t - (5.9
The above LBEs are solved in the following three steps.
A. Prestreaming collision step
. o f2] 8t (exi—uLai(pV—pcd) = 9j(ol) = S uauydiy) + pgi]
Fa0 =060 == -S o S P rwy| (5.4
Tl Cs xt)
A guz_gi ot 0 2 (i) _ 2
0.(X1)=0,(X,t)— 5r _E{(eai_ui)[ai(p —pCs) —dj( o)) = U S;j) + pgi [T (W)} i)
(x,t)
o (t) 2 (t)_ o2
+?[eai(9i(p —pCHI'(0)—(9,p" —c5) dipuil’' (0) ] (x1) - (5.5
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B. Streaming step

f(x+e,ott+ot)=F,(x1), (5.6)

0.(x+e,dt,t+68t)=g,(xt). (5.7

C. Poststreaming collision step

. f,— 1
f (x+e,ot,t+6t) =1, (x+e,dtt+ &)—'—T

(x+eab‘t,t+ ot)

?(eai—ui>[ai<pm—pci)—g(oﬁ“—§Wk“k5ij)+”9i]p(u) NG

S (x+e,ot,t+ o)

e
U9

0,.(x+e,dt,t+ 6t)=g,(x+e,ot,t+ )+ -

ot t 2
+§{(eai_ui)[ai(p —pCs)
(x+e,dt,t+dt)

(H_ 2 ot (t) 2
—d;j(aj; _EMﬁkUk5ij)+Pgi]r(u)}(x+ea&,t+5t)_E[eaiai(p —pcs)I'(0)

—(,p" =) dipuiT(0) I xse 5+ a0 (5.9

The poststreaming collision step can be recast for the particle distribution funéfjcarsd g, rather tharf,, andg, as

- 1 o
f (x+e,dt,t+ 5t)=f (x+e,ot,t+ 6t)— m(fa—f'fﬁ)
T (x+e, 8t t+dt)
_Tat (eai_Ui)[ai(p(t)—ch)—(71(01(,'1)_ S maUS;) + pgi]
27+1 Cg

I'(u) , (510
(x+e,dt,t+dt)

1 7ot
PN _ a4 —qat U (pM = e
Gl X+ €0, t+ 5 = (x+ €0t t+ ) — 5——= (8.~ 95 51 L(€ai ~U)Ldi(p™ = pCs)

(x+e,ét,t+at)

L 2 Tt ) 2
—dj( 0y _§Mf9kuk5ij)+P9i]F(U)](x+eaa,t+&)+m[eaiﬁi(p —pcs)I'(0)

_(app(t)_Cg)&ipuir(o)](x+eaé‘t,t+6t)- (5.11

The density, the velocity, and the pressure are CalculateWhereapp(‘) is analytically given by the EOS angd= u/p is
below after the streaming step: the kinematic viscosity. The velocity divergence term on the
right-hand side of Eq(5.13 can be evaluated explicitly at

the previous time step or implicitly using an iterative ap-

p=2> fa, (5.12  proach.
a
VI. ONE-DIMENSIONAL ISOTHERMAL PHASE
5 cidt [ 2 cZot CHANGE PROBLEM
=2 et 50| 01— S ndUS |+ —5—pT _ _ o
PEstl Ecv: Calat 375|713 MU 2 P9 In this section, a one-dimensional isothermal phase

(5.13 change problem as shown schematically in Fig. 1 is exam-
ined to compare the nonideal gas pressure evolution LBE

St method (NIG-PEM) described in Sec. V with the ideal gas
p=> §,— E(app“)—cg)aipui , (5.14  pressure evolution LBE methddG-PEM) that assumes in-
a compressibility and recovers E(B.2). The IG-PEM differs
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T T T ? T T piston velocity remain constant, the speed of displacement of
the interface is also constant and given as
U-pU,
Ui:M' (6.2)
P11~ Py
VAPOR wherep,, p,, U, andU, are the bulk liquid density, the

bulk vapor density, the liquid velocity, and the vapor veloc-
ity, respectively. The exact location of the interface is then
determined from

INTERFACE
| | |

¢ Y v oy i ¢ yi()=yo+Uit. 6.3

It is clearly seen that the NIG-PEM predicts phase change
correctly. The bulk phase densities remain constant under
LIQUID depressurization and phase change occurs in such a way to
satisfy mass balance due to withdrawal of the piston. Also
noticeable is the constant thickness of the interface region.
The IG-PEM, however, is not able to allow phase change at
the interface. The phase interface is stationary and mass bal-
mm_ ance is achieved by lowering the bulk phase densities in spite

of the assumption of incompressibility of the fluid in the
IG-PEM. The budgets of pressure evolution equations for
FIG. 1. Schematic representation of a one-dimensional isothemonideal gases and ideal gases, namely, B3%. and(3.2),
mal phase-change problem. together with velocity divergence are shown in Fig. 3 for
comparison. Contrary to the ideal gas case, the nonideal gas
pressure evolution equation E®.1) is approximately satis-
from the two-phase LBE method of RefgZ—10] in two  fied because of the consistent definition of the pressure.
aspects. In the IG-PEM, the Crank-Nicolson method is apu;#p! is non-negligible and is roughly balanced by
plied consistently as explained in Appendix B and the denpapp(‘)aiui as shown in Fig. &. At the interface,
sity is used as the order parameter to recover the continuityapp(t)aiui for nonideal gases behaves quite differently from
equation(2.11) as discussed in Appendix C. As the piston isthe ideal gas counterpart. The variationpta’»fpp(‘)aiui is ap-
withdrawn, the vapor pressure decreases to vaporize the liggarently correlated with the velocity divergeneégy; term
uid near the phase interface for thermal equilibrium. Herethat has its maximum value near the phase interface. Thus it
we assume large thermal conductivity, and slow and isothelindicates that the compressibility of the fluid must be taken
mal phase changd 2]. into account when phase change phenomenon is of primary

Two-dimensional nine-speed velocity lattice model isinterest of study.
used[21] and computations are carried out on a periodic
domain in the horizontal direction. The lower boundary is
kept stationary and the upper boundary has a velocity iof VII. CONCLUDING REMARKS
the vertical direction. All the variables are assumed to have
zero normal gradient at boundaries. The central diﬁerencgm
scheme is used to evaluate the gradient terms in the coIIisioU
steps and the directional derivative of any varialen the
e, direction is discretized as

Stability of numerical schemes for multifluid flow is sen-
ve to the way that the thermodynamic pressure is updated.
pdating the pressure via the equation of state often gener-
ates oscillatory fluctuations in the pressure field. The pres-
sure evolution equation is proposed by Rdf$8-2(0 to
avoid spurious pressure fluctuations. If the pressure field is
evolved by the pressure evolution equation, pressure equilib-
[#(xte,)—(Xx—e,)] - : - - o
e, Vi(x)= . (6.1  rium among fluid components is automatically maintained.
2 In this paper, we extend this concept to one-component two-
phase LBE methods and incorporate the pressure evolution
) equation for nonideal gases into the LBE framework. As a
Figure 2 compares the results calculated from the NIGyegyt, stability of the LBE methods for nonideal gases can

PEM with those of the IG-PEM. Time is measuredHiU, e improved and phase change due to pressurization and de-
=0.002,H=256, p.=1, andT=0.8 in the EOS2.13 for The previous incompressible lattice Boltzmann multi-

which p,=1.871 andp,=0.0657, x=0 in Eq. (2.7, the  phase mode[7-10 is identified as the ideal gas pressure
gravitational acceleratiog;=0, andr=0.5 are used in the evolution LBE method and is shown to be only valid for
simulation. Assuming that the bulk phase densities and th&leal gas flow in the incompressible limit. In spite of all the
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excellent results obtained by using the previous model, it iS'he partial support of the IIHR-Hydroscience & Engineering
unable to predict phase change correctly, for phase changeas the University of lowa is also acknowledged.
generally involved with compressibility of the fluid at the
interface region. In the present study, we propose a pressure
evolution LBE method that is valid for nonideal gases and
allows compressibility at the interface region in an effort to
capture phase change. We use an isothermal phase changeit is necessary to adopt the Crank-Nicolson temporal dis-
problem to study the role of the correct pressure evolutiorgretization for the collision term and the body force terms,
equation and the compressibility effect. Numerical experi-such as the gravity force and the surface tension force, in
ments confirm that the nonideal gas pressure evolution LBrder to achieve both second-order accuracy and uncondi-
method predicts phase change correctly. The assumptioni®nal stability. In most of previous literatures, however, the
made in the ideal gas pressure evolution LBE method ar€rank-Nicolson discretization of the body force terms is
examined by the budget analysis of the pressure evolutionsed in conjunction with the explicit Euler discretization of
equation. the collision term. This leads to spurious gradients of those
body force terms in the recovered macroscopic equations as
shown below.

The discrete Boltzmann equation with the body foFge

This work was supported by the Carver Scientific Re-generally expressed in Eq2.1) can be consistently dis-
search Initiative Grants Program at the University of lowa.cretized as

APPENDIX A: INCONSISTENT TEMPORAL
DISCRETIZATION
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(x.) T lix+e ot t+on) PCs (x.1)
Fi(e.—y;
'(7'2') fzq , (A1)
PCs (x+e,dt,t+6t)
w
wherer=\/6t=v/(c26t). The Chapman-Enskog expansion f (x+e, dt,t+ 6t)—f (x,1)
starts from Taylor-series expansion around the point at which o
the collision term is definef5], i.e., around X+ 1/2e,6t,t _ fa A1y s Fi(e,i—uj) req
in thi i i = 2 a
+1/26t) in this case. Expansion of EGA2) yields O P 2 pCE %)
d fo—f5o  Fi(e,—u; (e —u
8| -+ ety [f= =+ l L ) feq 4 FilCai—th) 4oq , (A3)
PEs PCs (x+e, 8L+ dt)
+higher-order terms. (A2)
Mixed discretization of Eq(2.1) as was done by Ref7]  with modified 7 being 7=\/6t= v/(Cgét) + . Taylor-series
results in expansion of Eq(A4) around k,t) gives
|
J o[ g 2 f.—f20 Fieq—u) ot? 2Fi(eqi—Up)
—te —|—+e o —__“ L a e | _ 4@ .9 _ el Tl ceq
ot ot earl&l fa 2 | ot ewlﬁl fz)z T ot pcg fa 2 1ot eazlé)l pcg fa
+higher-order terms. (A4)
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Two terms which are absent in EA2) now appear. The
second term on the left-hand side affects the physical viscos-  dip+di(pU;) =di\

(1) 2
di| oij” — 3 mIUKSij |~ pGi -

ity that can be offset by modifying the relaxation parameter (B2)
[26], but the last term on the right-hand side cannot be can-
celed out and remains as a second-order error term. Note that the right-hand side of the continuity equation is not

zero. The spurious gradients of the terms dropped from Eq.

(4.10 are proportional to the relaxation parameter
APPENDIX B: EFFECTS OF DROPPING BODY FORCE

TERMS IN THE EQUATION FOR THE ORDER APPENDIX C: EFFECTS OF USING EQ. (4.10
PARAMETER AS THE EQUATION FOR THE ORDER PARAMETER

Heet al.[7,8] and Zhanget al.[9,10] dropped the gravity He et al. [7,8] and Zhanget al. [9,10] used a variant of
force and _the surface tension force in the DBE that governgq. (4.10) for the order parametep that represents physical
the evolution of the order parametgr Takep=p (density.  properties such as the density and the viscosity. Assuming
Equation(4.10 without these force terms is written as that all the body forces are retained and the Crank-Nicolson

scheme is consistently applied for both the collision term and
1 o the body force terms, the macroscopic equation recovered
Ifat€uidifa=— X(fa_faq) from the Chapman-Enskog expansion takes the form of

—u)e (pM=pc2
_ (€ u')ﬁ'(zp Pes) I'(u). (B1) drp+di(Pu;) =g\
Cs

. (Cy

¢
aipt— ;0ip(t)

The terms on the right-hand side are again the error terms
Assuming that the Crank-Nicolson method is applied forproportional to the relaxation parameter Zhang, He, and
both the collision term and the body force terms, the macroChen|[9] interpreted Eq(C1) as a level-set-like equation but
scopic equation recovered from the Chapman-Enskog expasince ¢ is not a distant function in this case, this interpreta-
sion takes the form of tion is not appropriate.
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