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Pressure evolution lattice-Boltzmann-equation method for two-phase flow with phase change
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A lattice-Boltzmann-equation method for nonideal gases augmented by the pressure evolution equation is
proposed to simulate isothermal two-phase fluid flow with phase change. The pressure evolution equation is
derived by taking time derivative of the equation of state for nonideal gases. Unlike previous methods that use
the equation of state to update pressure, the pressure field is evolved using the pressure evolution equation. The
new approach has two advantages. First, it can avoid spurious pressure fluctuations at phase interfaces that
develop owing to the pressure update by the equation of state, thus improving numerical stability of the
method. Second, it permits compressibility of the fluid at phase interfaces when phase change occurs due to
pressurization and depressurization. The proposed method is applied to simulate an isothermal phase change
process. The numerical result is in excellent agreement with the analytical solution.
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I. INTRODUCTION

Among many successful applications of the lattic
Boltzmann-equation~LBE! methods to fluid mechanics, th
LBE methods for nonideal gases or binary fluids have w
nessed most significant progress in recent years@1–10#. Most
of these two-phase LBE methods can be considered as
fuse interface methods@11# in that the phase interface i
spread on grid points and the surface tension is transfor
into a volumetric force. Generally, diffuse interface metho
have some advantages over sharp interface methods be
computations are much easier for three-dimensional~3D!
flows in which topological change of the interfaces is co
plicated. They are especially useful when phase chang
under consideration@12#, since the speed of displacement
the interface must be explicitly computed in sharp interfa
methods. In addition, they are appropriate for some proble
that are currently tough for sharp interface methods suc
contact line dynamics and coalescence of droplets. As diff
interface methods, the LBE methods naturally share al
these characteristics.

Recently, He, Shan, and Doolen@13# proposed an LBE
formulation for nonideal gases based on the continuous
crete Boltzmann equation~DBE! using a single-relaxation
time approximation@14#. It is a promising formulation be-
cause the analysis of other schemes that incorpo
intermolecular forces into LBE methods can be clearly p
formed in the framework of the proposed formulation. Th
showed that anisotropy found in other schemes is a co
quence of an inappropriate intermolecular interaction. Us
the formulation with some modifications. Heet al. simulated
single- and multiple-mode Rayleigh-Taylor instabilities
two dimensions@7# and three dimensions@8#, and reported
excellent results. Later, Zhanget al. @9,10# validated the sur-
face tension term in the model and studied the effects
surface tension on two-phase Kelvin-Helmholtz instabiliti

Like most of previous LBE methods for one-compone
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nonideal gases, the original derivation in Ref.@13# requires
only a single-particle distribution function for the transpo
of mass and momentum. The densityr and the velocityu are
updated by taking moments of the particle distribution fun
tion, and the thermodynamic pressurep(t) is obtained from
the equation of state~EOS! for nonideal gases, e.g., the va
der Waals EOS. However, they have not reported any
merical simulations using the original formulation. To o
knowledge, the original formulation@13# is numerically un-
stable due to severe pressure fluctuations at phase inter
in which ]rp(t) changes its sign. In the working metho
@7–10#, they introduced a second-particle distribution fun
tion for the transport of the order parameter or the density
particular. The DBE and LBE for themassand momentum
are then transformed into the DBE and LBE for thepressure
andmomentumunder the assumption of incompressibility
the fluid. The resulting macroscopic equations include
continuity equation, the momentum equation, and the ar
cial compressibilitylike equation for the pressure. Large
due to the transformation, numerical stability is significan
improved though at the cost of solving another set of dis
bution function for the continuity equation. He, Chen, a
Zhang @7# argued that the stability was gained due to t
smaller magnitude of the external body force term after
transformation. Chenet al. @15# adopted the above single
particle-distribution-function LBE method for nonideal gas
with the aid of a total variation diminishing scheme to sim
late two-phase flow having a large density ratio.

Despite all the excellent results presented in Refs.@7–10#,
it should be pointed out that their working method leav
ambiguity and poses some problems of physical origin.
consistent temporal discretization~e.g., the explicit Euler
method for the collision term and the Crank-Nicolso
method for the external body force terms! reduces the orde
of accuracy of the scheme~see Appendix A! and omission of
some body force terms in the equation for the order para
eter results in spurious gradients of these terms~see Appen-
dix B!. On top of all these, the pressure in the model is
uniquely defined. The pressure in the intermolecular inter
tion term for nonideal gases is obtained from the EOS an
©2003 The American Physical Society03-1
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therefore the thermodynamic pressure, while the pressure
dated by taking moment of the particle distribution functi
is the hydrodynamic pressure approximately satisfying
compressibility as in the artificial compressibility metho
@16#. If phase change occurs, the fluid cannot remain inco
pressible at phase interfaces and the effect of compressib
must be taken into account.

From different perspective, the equation for the press
recovered from the LBE method in Refs.@7–10# can be re-
garded as a simplified version of the pressure evolution eq
tion rather than the artificial compressibilitylike equation
interpreted by Refs.@7,17#. The reason why the LBE meth
ods based on single-particle distribution function could
unstable at phase interfaces lies in evaluation of the press
Updating the pressure via the EOS often generates erron
pressure fluctuations at phase interfaces due to numerica
fusion @18#. Alternatively, if the pressure is updated by th
pressure evolution equation, the pressure equilibrium am
fluid components is automatically maintained and the g
eration of spurious pressure fluctuations can be avoi
@19,20#. It is speculated that the success of the LBE meth
in Refs.@7–10# is mainly due to the introduction of the pre
sure evolution equation even though it is derived for inco
pressible flows and appropriate only for ideal gases.

The objective of the paper is to present a different LB
method based on the pressure evolution equation for sim
tion of one-component two-phase fluid flow with pha
change. The DBE and LBE that recover the general pres
evolution equation for nonideal gases will be derived. W
will show that the artificial compressibilitylike equatio
found in Refs.@7–10# is a simplified version of the genera
pressure evolution equation and only valid for the spe
case of ideal gas flow in the incompressible limit. Maj
difficulties with this special case arise when phase cha
occurs. Unlike immiscible models for binary fluids@11#, a
model for isothermal liquid-vapor flow is supposed to pred
phase change due to pressurization and depressuriza
Since the pressure updated by the ideal gas pressure e
tion equation only satisfies incompressibility, the pressur
decoupled from the density variation and consequently,
rect phase change is hardly expected. Solving the approp
pressure evolution equation also removes the dual mean
of the pressure.

The paper is organized as follows. In Sec. II, the discr
Boltzmann equation for a one-component two-phase fl
model by He, Shan, and Doolen@13# is reviewed to elucidate
the pressure update procedure using the van der Waals E
In Sec. III, the pressure evolution equation for nonideal ga
is derived and compared with that for ideal gases, and
corresponding DBE is given in Sec. IV. The LBE meth
based on the pressure evolution equation is presented in
V. Section VI is devoted to testing the method by a on
dimensional isothermal phase change problem. The me
is also compared with the two-phase LBE method that
sumes incompressibility and utilizes the ideal gas press
evolution equation. Concluding remarks are given
Sec. VII.
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II. DISCRETE BOLTZMANN EQUATION
FOR NONIDEAL GASES

The discrete Boltzmann equation for nonideal gases p
posed by He, Shan, and Doolen@13# reads

Dt f a5] t f a1ea i] i f a52
1

l
~ f a2 f a

eq!1
Fi~ea i2ui !

rcs
2 f a

eq,

~2.1!

where f a is the single-particle distribution function in thea
direction of a lattice model,ea i is the i component of the
a-direction microscopic velocity,Fi is an external body
force which can depend on both space and time,l is the
relaxation time due to collision, andf a

eq is the equilibrium
distribution function.

Equation~2.1! with the equilibrium distribution function
@21#

f a
eq5tarF11

ea iui

cs
2 1

~ea iea j2cs
2d i j !uiuj

2cs
4 G , ~2.2!

where ta is a weighting factor, recovers the macroscop
mass and momentum equations:

] tr1] i~rui !50, ~2.3!

] t~rui !1] j~ruiuj !5] js i j
~ ig !1Fi , ~2.4!

wheres i j
( ig)52rcs

2d i j 1m(] jui1] iuj ).
The desired form of the momentum equation for nonid

gases@22# is

] t~rui !1] j~ruiuj !5] js i j 1rgi , ~2.5!

wherergi is the gravity force. The stressess i j can be de-
composed into three parts:s i j 52p(t)d i j 1s i j

(v)1s i j
(1) . Here,

p(t)5p(t)(r) is the bulk thermodynamic pressure for the is
thermal fluid ands i j

(v) is the viscous stress tensor,

s i j
~v !5m~] jui1] iuj !1j]kukd i j , ~2.6!

wherem is the molecular viscosity andj522/3m is the bulk
viscosity. The stresss i j

(1) is derived from the van der Waals
Cahn-Hilliard free energy and takes the form of

s i j
~1!5kF S 1

2
u“ru21r¹2r D d i j 2] ir] jrG . ~2.7!

k is related to the magnitude of the surface tension force.
van der Waals–Cahn-Hilliard free energy was originally d
rived to describe the near-critical behavior of mixtures, wh
the density gradients are small. However, it is generally c
sidered to be valid even when the density gradients bec
large @23#. Equation~2.7! can be rearranged as

s i j
~1!52k~r¹2rd i j 1Ti j !, ~2.8!

where in two dimensions
3-2
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@Ti j #5F ~]x
2r2]y

2r!/2 ]xr]yr

]xr]yr 2~]x
2r2]y

2r!/2
G . ~2.9!

Sinces i j
( ig)Þs i j , the external forceFi is chosen to satisfy

] js i j
( ig)1Fi5] js i j ,

Fi52] j~p~ t !2rcs
2!d i j 1] j S s i j

~1!2
2

3
m]kukd i j D1rgi .

~2.10!

In Refs. @7,13#, Fi was chosen by considering the interm
lecular attraction and the effects of the exclusion volume
the molecules on the equilibrium properties of a dense g
In either case, the finalFi ’s take the same form.

The macroscopic equations recovered from the DBE w
the above body forceFi are

] tr1] i~rui !50, ~2.11!

] t~rui !1] j~ruiuj !

52] j p
~ t !d i j 1] jFm~] jui1] iuj !2

2

3
m]kukd i j G

1] js i j
~1!1rgi , ~2.12!

where the molecular viscosity is given bym5rlcs
2. To close

the system, we need an EOS. For instance, the van der W
EOS normalized by the critical densityrc , the critical tem-
peratureTc , and the reference speed of soundcs5ART
51/), R being the gas constant, reads

p~ t !~r!5rcS r̃

32 r̃
2

3r̃2

8T̃
D , ~2.13!

where r̃5r/rc and T̃5T/Tc . If T̃,1, there is a region of
negative]rp(t), which separates liquid and vapor phases
the fluid.

III. PRESSURE EVOLUTION EQUATION

In Refs.@19,20#, the pressure evolution equation was d
rived for multicomponent ideal gases. In what follows, w
will show the general pressure evolution equation for n
ideal gases. The general evolution equation for the pres
p(t) is obtained by taking time derivative of the EOS a
utilizing the continuity equation:

] tp
~ t !1r]rp~ t !] iui1ui] i p

~ t !50, ~3.1!

where]rp(t) is the speed of sound that may not be const
for nonideal gases and even changes the sign at the p
interfaces. Consider a two-phase system in which liquid
vapor are in pressure equilibrium so that both pressure
velocity are constant and continuous across the phase i
faces. According to Refs.@19,20# that considered two-fluid
systems, if the pressure is evolved using Eq.~3.1!, the pres-
sure at the interface remains constant and the pressure
librium between two phases is automatically maintained.
05670
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Assuming ideal gases with a constant speed of so
]rp5cs

2, the pressure evolution equation reduces to

] tp
~ t !1rcs

2] iui1ui] i p
~ t !50. ~3.2!

Equation~3.2! is solved in Refs.@7–10# under the assump
tion of ui] i p

(t);O(Ma3) ~Ma, Mach number!, which is
equivalent to solving an equation for the hydrodynamic pr
surep(h),

] tp
~h!1rcs

2] iui50. ~3.3!

Equation~3.3! is identified as Chorin’s@16# artificial com-
pressibilitylike equation in Refs.@10,17#. In the incompress-
ible limit, the time derivative of the pressure becomes sm
and the incompressible condition is almost satisfied. T
interpretation, however, poses three nontrivial proble
when nonideal gases are under consideration. First, the
sumption of the constant speed of sound in the derivation
Eq. ~3.2! becomes invalid for nonideal gases. Second,
assumption of negligibleui] i p

(t) in Eq. ~3.2! at phase inter-
faces is questionable for nonideal gases. Third, use of
~3.3! results in dual meanings of the pressure in the mod
The pressure in the intermolecular interaction term is
thermodynamic pressurep(t) which is given by the EOS and
is a function of the density. The pressure in Eq.~3.3! is the
hydrodynamic pressurep(h) whose role is simply to enforce
the incompressible condition of free velocity divergence a
is obtained by taking moment of the particle distributio
function. This inconsistency even complicates the phys
meaning of the pressure in the presence of phase cha
During phase change due to pressurization and depressu
tion, ]rp(t) undergoes non-negligible change in both sign a
magnitude across the phase interfaces and the effects of
pressibility of the fluid must be considered@24#.

Equation~2.13! can be used to determine the thermod
namic pressure in the momentum equation. However, up
ing the pressure via the EOS often generates erroneous
sure fluctuations at the phase interfaces. According to Ka
@19#, ‘‘These oscillations are not the ones commonly asso
ated with high-order schemes . . . They not only render the
solutions~at times fatally! oscillatory, but also set off disper
sive acoustic mechanisms which tend to further thicken
interface.’’ Therefore, if the pressure is updated using
pressure evolution equation, the pressure equilibrium am
fluid components is automatically maintained and the g
eration of spurious pressure fluctuations can be avoided

IV. DISCRETE BOLTZMANN EQUATIONS
FOR PRESSURE EVOLUTION MODEL

In this section, the DBEs for isothermal two-phase flo
with phase change are derived according to the pressure
lution equation~3.1!. The DBE ~2.1! for the massand mo-
mentumequations is transformed into that for thepressure
evolutionandmomentumequations. He, Chen, and Zhang@7#
first used the transformation to obtain the pressure evolu
equation for ideal gases, viz., Eq.~3.3!. They, however, in-
terpreted the pressure evolution equation as the equation
3-3



e

ew

le

for

for

T. LEE AND C.-L. LIN PHYSICAL REVIEW E 67, 056703 ~2003!
enforces incompressibility in the artificial compressibilitylik
method.

In order to perform the transformation, we define a n
particle distribution function

ga5 f acs
21~p~ t !2rcs

2!Ga~0!, ~4.1!

where

Ga~u!5taF11
ea iui

cs
2 1

~ea iea j2cs
2d i j !uiuj

2cs
4 G . ~4.2!

Taking the total derivativeDt of the new variablega gives

Dtga5cs
2Dt f a1Dtp

~ t !G~0!2cs
2DtrG~0!

52
1

l
~ga2ga

eq!2~ea i2ui !@] i~p~ t !2rcs
2!

2] j~s i j
~1!2 2

3 m]kukd i j !1rgi #G~u!1Dtp
~ t !G~0!

2cs
2DtrG~0!, ~4.3!

where the new equilibriumga
eq is

ga
eq5taFp~ t !1rcs

2S ea iui

cs
2 1

~ea iea j2cs
2d i j !uiuj

2cs
4 D G .

~4.4!
a

05670
The last two terms on the right-hand side of Eq.~4.3! can be
expanded through the continuity equation as follows:

Dtp
~ t !5] tp

~ t !1ea i] i p
~ t !52]rp~ t !] irui1ea i] i p

~ t !

~4.5!

and

Dtr5] tr1ea i] ir52] irui1ea i] ir. ~4.6!

He, Chen, and Zhang@7# further assumed incompressib
fluids, i.e.,] iui50, to reduce the above two equations to

Dtp
~ t !52]rp~ t !] irui1ea i] i p

~ t !5~ea i2ui !] i p
~ t !

~4.7!

and

Dtr52] irui1ea i] ir5~ea i2ui !] ir. ~4.8!

This eventually leads to the pressure evolution equation
ideal gases, Eq.~3.2!, or the artificial compressibilitylike
equation~3.3! rather than the pressure evolution equation
nonideal gases, Eq.~3.1!.

Finally, Eqs.~4.5! and ~4.6! are substituted into the DBE
for ga :
function

the
] tga1ea i] iga52
1

l
~ga2ga

eq!2~ea i2ui !@] i~p~ t !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #G~u!1ea i] i~p~ t !2rcs

2!G~0!

2~]rp~ t !2cs
2!] i~rui !G~0!. ~4.9!

Now that the continuity equation is transformed into the pressure evolution equation, we need another distribution
for the continuity equation. The DBE for the density is simply Eq.~2.1! with the body force introduced above:

] t f a1ea i] i f a52
1

l
~ f a2 f a

eq!2
~ea i2ui !@] i~p~ t !2rcs

2!2] j~s i j
~1!2 2

3 m]kukd i j !1rgi #

cs
2 G~u!. ~4.10!

If the terms associated with (s i j
(1)2 2

3 m]kukd i j ) and rgi are omitted, spurious derivatives of these terms appear in
Chapman-Enskog expansion as shown in Appendix B.

The macroscopic equations recovered through the Chapman-Enskog expansion are

] tr1] i~rui !50, ~4.11!

] t~rui !1] j~ruiuj !52] j p
~ t !d i j 1] jFm~] jui1] iuj !2

2

3
m]kukd i j G1] js i j

~1!1rgi , ~4.12!
ure
een
LBE
a-
and

] tp
~ t !1r]rp~ t !] iui1ui] i p

~ t !50, ~4.13!

where the molecular viscosity is given bym5rlcs
2. It is

instructive to compare the above equations with Eqs.~2.11!–
~2.13! representative of the LBE method that employs
single-particle distribution function and adopts the press
update procedure via the EOS. The only difference betw
them is the pressure update procedure. The two-phase
method of Refs.@7–10# recovers the order parameter equ
tion ~C1! rather than the density equation~4.11! and the ideal
gas pressure evolution~3.2! rather than Eq.~4.13!.
3-4
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V. LATTICE BOLTZMANN EQUATIONS

In order to numerically solve the DBEs, Eqs.~4.9! and~4.10!, these equations are discretized along characteristics over
stepdt. The LBE for f a thus obtained is

f a~x1eadt,t1dt !2 f a~x,t !52E
t

t1dt f a2 f a
eq

l
dt2E

t

t1dt ~ea i2ui !@] i~p~ i !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #

cs
2 G~u!dt.

~5.1!

Note that the time integration in@ t,t1dt# is coupled with the space integration in@x,x1eadt#. The Chapman-Enskog analys
shows that the trapezoidal rule must be used for both of the integrations in order not to introduce any spurious deriv
the second term into the system while retaining second-order accuracy. Application of the trapezoidal rule leads to

f a~x1eadt,t1dt !2 f a~x,t !52
1

2 F f a2 f a
eq

t
U

~x,t !

1
f a2 f a

eq

t
U

~x1eadt,t1dt !
G

2
dt

2 F ~ea i2ui !@] i~p~ t !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #

cs
2 G~u!G

~x,t !

2
dt

2 F ~ea i2ui !@] i~p~ i !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #

cs
2 G~u!G

~x1eadt,t1dt !

, ~5.2!

wheret5l/dt.
Likewise, the LBE forga is

ga~x1eadt,t1dt !2ga~x,t !52
1

2 Fga2ga
eq

t
U

~x,t !

1
ga2ga

eq

t
U

~x1eadt,t1dt !
G2

dt

2
$~ea i2ui !@] i~p~ t !2rcs

2!

2] j~s i j
~1!2 2

3 m]kukd i j !1rgi #G~u!%~x,t !1
dt

2
@ea i] i~p~ t !2rcs

2!G~0!

2~]rp~ t !2cs
2!] iruiG~0!#~x,t !2

dt

2
$~ea i2ui !@] i~p~ t !2rcs

2!

2] j~s i j
~1!2 2

3 m]kukd i j !1rgi #G~u!%~x1eadt,t1dt !1
dt

2
@ea i] i~p~ t !2rcs

2!G~0!

2~]rp~ t !2cs
2!] iruiG~0!#~x1eadt,t1dt ! . ~5.3!

The above LBEs are solved in the following three steps.

A. Prestreaming collision step

f̂ a~x,t !5 f a~x,t !2
f a2 f a

eq

2t
U

~x,t !

2
dt

2

~ea i2ui !@] i~p~ t !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #

cs
2 G~u!U

~x,t !

, ~5.4!

ĝa~x,t !5ga~x,t !2
ga2ga

eq

2t
U

~x,t !

2
dt

2
$~ea i2ui !@] i~p~ t !2rcs

2!2] j~s i j
~ j !2 2

3 m]kukd i j !1rgi #G~u!%~x,t !

1
dt

2
@ea i] i~p~ t !2rcs

2!G~0!2~]rp~ t !2cs
2!] iruiG~0!#~x,t ! . ~5.5!
056703-5
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B. Streaming step

f̂ a~x1eadt,t1dt !5 f̂ a~x,t !, ~5.6!

ĝa~x1eadt,t1dt !5ĝa~x,t !. ~5.7!

C. Poststreaming collision step

f̂ a~x1eadt,t1dt !5 f a~x1eadt,t1dt !1
f a2 f a

eq

2t
U

~x1eadt,t1dt !

1
dt

2

~ea i2ui !@] i~p~ t !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #

cs
2 G~u!U

~x1eadt,t1dt !

, ~5.8!

ĝa~x1eadt,t1dt !5ga~x1eadt,t1dt !1
ga2ga

eq

2t
U

~x1eadt,t1dt !

1
dt

2
$~ea i2ui !@] i~p~ t !2rcs

2!

2] j~s i j
~1!2 2

3 m]kukd i j !1rgi #G~u!%~x1eadt,t1dt !2
dt

2
@ea i] i~p~ t !2rcs

2!G~0!

2~]rp~ t !2cs
2!] iruiG~0!#~x1ead,t1dt ! . ~5.9!

The poststreaming collision step can be recast for the particle distribution functionsf a andga rather thanf̂ a and ĝa as

f a~x1eadt,t1dt !5 f̂ a~x1eadt,t1dt !2
1

2t11
~ f̂ a2 f a

eq!U
~x1eadt,t1dt !

2
tdt

2t11

~ea i2ui !@] i~p~ t !2rcs
2!2] j~s i j

~1!2 2
3 m]kukd i j !1rgi #

cs
2 G~u!U

~x1eadt,t1dt !

, ~5.10!

ga~x1eadt,t1dt !5ĝ~x1eadt,t1dt !2
1

2t11
~ ĝa2ga

eq!U
~x1eadt,t1dt !

2
tdt

2t11
@~ea i2ui !@] i~p~ t !2rcs

2!

2] j~s i j
~1!2 2

3 m]kukd i j !1rgi #G~u!#~x1eadt,t1dt !1
tdt

2t11
@ea i] i~p~ t !2rcs

2!G~0!

2~]rp~ t !2cs
2!] iruiG~0!#~x1eadt,t1dt ! . ~5.11!
te
he
t
p-

se
m-
BE
s

The density, the velocity, and the pressure are calcula
below after the streaming step:

r5(
a

f̂ a , ~5.12!

rcs
2ui5(

a
eaĝa1

cs
2dt

2
] j S s i j

~1!2
2

3
m]kukd i j D1

cs
2dt

2
rgi ,

~5.13!

p~ t !5(
a

ĝa2
dt

2
~]rp~ t !2cs

2!] irui , ~5.14!
05670
dwhere]rp(t) is analytically given by the EOS andn5m/r is
the kinematic viscosity. The velocity divergence term on t
right-hand side of Eq.~5.13! can be evaluated explicitly a
the previous time step or implicitly using an iterative a
proach.

VI. ONE-DIMENSIONAL ISOTHERMAL PHASE
CHANGE PROBLEM

In this section, a one-dimensional isothermal pha
change problem as shown schematically in Fig. 1 is exa
ined to compare the nonideal gas pressure evolution L
method~NIG-PEM! described in Sec. V with the ideal ga
pressure evolution LBE method~IG-PEM! that assumes in-
compressibility and recovers Eq.~3.2!. The IG-PEM differs
3-6
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from the two-phase LBE method of Refs.@7–10# in two
aspects. In the IG-PEM, the Crank-Nicolson method is
plied consistently as explained in Appendix B and the d
sity is used as the order parameter to recover the contin
equation~2.11! as discussed in Appendix C. As the piston
withdrawn, the vapor pressure decreases to vaporize the
uid near the phase interface for thermal equilibrium. He
we assume large thermal conductivity, and slow and isot
mal phase change@12#.

Two-dimensional nine-speed velocity lattice model
used @21# and computations are carried out on a perio
domain in the horizontal direction. The lower boundary
kept stationary and the upper boundary has a velocity ofU in
the vertical direction. All the variables are assumed to h
zero normal gradient at boundaries. The central differe
scheme is used to evaluate the gradient terms in the colli
steps and the directional derivative of any variablec in the
ea direction is discretized as

ea•“c~x!5
@c~x1ea!2c~x2ea!#

2
. ~6.1!

Figure 2 compares the results calculated from the N
PEM with those of the IG-PEM. Time is measured inH/U,
where H is the vertical dimension of the domain.U
50.002,H5256, rc51, andT̃50.8 in the EOS~2.13! for
which r̃ l51.871 andr̃v50.0657, k50 in Eq. ~2.7!, the
gravitational accelerationgi50, andt50.5 are used in the
simulation. Assuming that the bulk phase densities and

FIG. 1. Schematic representation of a one-dimensional isot
mal phase-change problem.
05670
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piston velocity remain constant, the speed of displacemen
the interface is also constant and given as

Ui5
r lUl2rvUv

r l2rv
, ~6.2!

wherer l , rv , Ul , and Uv are the bulk liquid density, the
bulk vapor density, the liquid velocity, and the vapor velo
ity, respectively. The exact location of the interface is th
determined from

yi~ t !5y01Uit. ~6.3!

It is clearly seen that the NIG-PEM predicts phase cha
correctly. The bulk phase densities remain constant un
depressurization and phase change occurs in such a wa
satisfy mass balance due to withdrawal of the piston. A
noticeable is the constant thickness of the interface reg
The IG-PEM, however, is not able to allow phase change
the interface. The phase interface is stationary and mass
ance is achieved by lowering the bulk phase densities in s
of the assumption of incompressibility of the fluid in th
IG-PEM. The budgets of pressure evolution equations
nonideal gases and ideal gases, namely, Eqs.~3.1! and~3.2!,
together with velocity divergence are shown in Fig. 3 f
comparison. Contrary to the ideal gas case, the nonideal
pressure evolution equation Eq.~3.1! is approximately satis-
fied because of the consistent definition of the press
ui] i p

(t) is non-negligible and is roughly balanced b
r]rp(t)] iui as shown in Fig. 3~a!. At the interface,
r]rp(t)] iui for nonideal gases behaves quite differently fro
the ideal gas counterpart. The variation ofr]rp(t)] iui is ap-
parently correlated with the velocity divergence] iui term
that has its maximum value near the phase interface. Th
indicates that the compressibility of the fluid must be tak
into account when phase change phenomenon is of prim
interest of study.

VII. CONCLUDING REMARKS

Stability of numerical schemes for multifluid flow is sen
sitive to the way that the thermodynamic pressure is upda
Updating the pressure via the equation of state often ge
ates oscillatory fluctuations in the pressure field. The pr
sure evolution equation is proposed by Refs.@18–20# to
avoid spurious pressure fluctuations. If the pressure fiel
evolved by the pressure evolution equation, pressure equ
rium among fluid components is automatically maintaine
In this paper, we extend this concept to one-component t
phase LBE methods and incorporate the pressure evolu
equation for nonideal gases into the LBE framework. As
result, stability of the LBE methods for nonideal gases c
be improved and phase change due to pressurization and
pressurization can be properly simulated.

The previous incompressible lattice Boltzmann mu
phase model@7–10# is identified as the ideal gas pressu
evolution LBE method and is shown to be only valid f
ideal gas flow in the incompressible limit. In spite of all th

r-
3-7
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FIG. 2. Density profiles along the vertical ax
at various times:~a! t50.0, ~b! t51.0, ~c! t
52.0, ~d! t53.0, and~e! t54.0.
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excellent results obtained by using the previous model,
unable to predict phase change correctly, for phase chan
generally involved with compressibility of the fluid at th
interface region. In the present study, we propose a pres
evolution LBE method that is valid for nonideal gases a
allows compressibility at the interface region in an effort
capture phase change. We use an isothermal phase ch
problem to study the role of the correct pressure evolut
equation and the compressibility effect. Numerical expe
ments confirm that the nonideal gas pressure evolution L
method predicts phase change correctly. The assump
made in the ideal gas pressure evolution LBE method
examined by the budget analysis of the pressure evolu
equation.
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APPENDIX A: INCONSISTENT TEMPORAL
DISCRETIZATION

It is necessary to adopt the Crank-Nicolson temporal d
cretization for the collision term and the body force term
such as the gravity force and the surface tension force
order to achieve both second-order accuracy and unco
tional stability. In most of previous literatures, however, t
Crank-Nicolson discretization of the body force terms
used in conjunction with the explicit Euler discretization
the collision term. This leads to spurious gradients of tho
body force terms in the recovered macroscopic equation
shown below.

The discrete Boltzmann equation with the body forceFi
generally expressed in Eq.~2.1! can be consistently dis
cretized as
3-8
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f a~x1eadt,t1dt !2 f a~x,t !52
1

2 F f a2 f a
eq

t
U

~x,t !

1
f a2 f a

eq

t
U

~x1eadt,t1dt !
G1

dt

2 FFi~ea i2ui !

rcs
2 f a

eqU
~x,t !

1
Fi~ea i2ui !

rcs
2 f a

eqU
~x1eadt,t1dt !

G , ~A1!

FIG. 3. Distributions of each
term in the pressure evolution
equation along the vertical axis a
t51.0: ~a! NIG-PEM and~b! IG-
PEM.
n
ic
wheret5l/dt5n/(cs
2dt). The Chapman-Enskog expansio

starts from Taylor-series expansion around the point at wh
the collision term is defined@25#, i.e., around (x11/2eadt,t
11/2dt) in this case. Expansion of Eq.~A2! yields

dtF ]

]t
1ea i] i G f a52

f a2 f a
eq

t
1dt

Fi~ea i2ui !

rcs
2 f a

eq

1higher-order terms. ~A2!

Mixed discretization of Eq.~2.1! as was done by Ref.@7#
results in
05670
h
f a~x1eadt,t1dt !2 f a~x,t !

52
f a2 f a

eq

t
U

~x,t !

1
dt

2 FFi~ea i2ui !

rcs
2 f a

eqU
~x,t !

1
Fi~ea i2ui !

rcs
2 f a

eqU
~x1eadt,t1dt !

G , ~A3!

with modifiedt beingt5l/dt5n/(cs
2dt)1 1

2 . Taylor-series
expansion of Eq.~A4! around (x,t) gives
dtF ]

]t
1ea i] i G f a1

dt2

2 F ]

]t
1ea i] i G2

f a52
f a2 f a

eq

t
1dt

Fi~ea i2ui !

rcs
2 f a

eq1
dt2

2 F ]

]t
1ea i] i G2 Fi~ea i2ui !

rcs
2 f a

eq

1higher-order terms. ~A4!
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Two terms which are absent in Eq.~A2! now appear. The
second term on the left-hand side affects the physical vis
ity that can be offset by modifying the relaxation parame
@26#, but the last term on the right-hand side cannot be c
celed out and remains as a second-order error term.

APPENDIX B: EFFECTS OF DROPPING BODY FORCE
TERMS IN THE EQUATION FOR THE ORDER

PARAMETER

He et al. @7,8# and Zhanget al. @9,10# dropped the gravity
force and the surface tension force in the DBE that gove
the evolution of the order parameterf. Takef5r ~density!.
Equation~4.10! without these force terms is written as

] t f a1ea i] i f a52
1

l
~ f a2 f a

eq!

2
~ea i2ui !] i~p~ t !2rcs

2!

cs
2 G~u!. ~B1!

Assuming that the Crank-Nicolson method is applied
both the collision term and the body force terms, the mac
scopic equation recovered from the Chapman-Enskog ex
sion takes the form of
tt

ev

. E

u

u.

m

05670
s-
r
n-

s

r
-
n-

] tr1] i~rui !5] ilF] j S s i j
~1!2

2

3
m]kukd i j D2rgi G .

~B2!

Note that the right-hand side of the continuity equation is
zero. The spurious gradients of the terms dropped from
~4.10! are proportional to the relaxation parameterl.

APPENDIX C: EFFECTS OF USING EQ. „4.10…
AS THE EQUATION FOR THE ORDER PARAMETER

He et al. @7,8# and Zhanget al. @9,10# used a variant of
Eq. ~4.10! for the order parameterf that represents physica
properties such as the density and the viscosity. Assum
that all the body forces are retained and the Crank-Nicol
scheme is consistently applied for both the collision term a
the body force terms, the macroscopic equation recove
from the Chapman-Enskog expansion takes the form of

] tf1] i~fui !5] ilF] i p
~ t !2

f

r
] i p

~ t !G . ~C1!

The terms on the right-hand side are again the error te
proportional to the relaxation parameterl. Zhang, He, and
Chen@9# interpreted Eq.~C1! as a level-set-like equation bu
sincef is not a distant function in this case, this interpre
tion is not appropriate.
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